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A semi-implicit fully speciral collocation method for the simulation of
threo-dimensional mantle convection with depth-dependent thermo-
dynamic and transport praperties is presented. The variable property
Navier-Stokes equation expressed in terms of the primitive variable
vetocily and pressure is solved with the mass continuity and tem-
perature equations. The periodic honzontal boundary conditions alow
a Fourier expansion for the two horizontal directions. The stress-free,
impermeable isothermal boundary conditions along with the depth
dependent coefficients are handled with a Chebyshev expansion in the
vertical direction. In the limit of an infinite Prandti number appropriate
to mantle convection, the inertial terms in the momentum equation are
unimportant. In this case an explicit soiution of a Poisson equation for
pressure can be avoided; instead a fourth-order equation for vertical
velocity can be solved. Simultaneous imposition of both impermeable
and continuity boundary conditions during the vertical velocity evalua-
tion is discussed. The pressure distributions on the top and bottom
bounding planes were determined by means of an influence matrix
technigue. The numericat method employed here aveids time-splitting
errors and enforces velogity houndary conditions and continuity aver
the entire domain, including the boundaries, to machine accuracy.
Strongy time-dependent three-dimensional solutions up to a surface
Rayleigh number of 1x 107 have been obtained. Strong upwellings,
pulsating chaotically, are formed by the collective merging of cylindri-
cal plumes. €1 1994 Academic Press. Inc

[. INTRODUCTION

The strongly time-dependent convective Now patlern in
Eartl's mantle is well evident through its manifestations in
the various episodes of mountain-formation and continen-
tal break-up {Anderson [i], Richards er a4l [2], and
Campbell er al. [37). A number of issues such as internal
heating, phase transitions, and strongly depth-dependent
thermodynamic and transport properties make this
problem of thermal convection challenging. Earlier studies
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have madc approximations at various levels to make this
probiem mathematically and computationaily tractable.
Rectangular geometry and axisymmetry have been invoked
to render this inherently three-dimensional problem two-
dimensional. Mantle convection is often studied in a car-
tesian framework rather than in a spherical shell to enhance
spatial resolution. Simplifving assumptions have been
employed in the models used to simulate mantle convection.
The Boussinesq approximation, which neglects effects of
compressibility and viscous heating, is often used to study
mantle convection. Another important assumption often
used is constant thermodynamic and transport properties.

From theoretical and laboratory investigations, there is
mounting evidence to suggest that the thermal expansivity
decreases strongly across the mantie [4], the thermal con-
ductivity increases by a factor four across the mantle [5]
and that viscosity increases by at least a factor of 10 across
the mantle [6]. These strongly varying depth-dependencies
can have a profound effect on the structure of large-scale
mantle circulation and thermal plumes, as shown by recent
two-dimensional simulations by Hansen er al. [7].

The compressibility cflects can be accounted for with an
anelastic approximation which lies between Boussinesq -
approximation and a fully compressible representation. The
anclastic approximtion assumecs that the resulting convee-
tive velocities arc slow compared to the local sound speed.’
Effcctively, the sound speed is taken to be infinite and, con-
sequently, sound waves are filtered out. The advantage of
the anelastic approximation over the standard Boussinesq

! Since velocities in the mantle are on the order of a few cenlimeters per
year, as opposed 1o the sound speed on the order of few kilometers per
second, the anelastic approximation is certainly justified.
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approximation is that realistic depth-dependent variations
of the thermodynamic and transport properties along with
viscous heating can be taken into account. Moreover, the
fluid now undergoes compression and expansion, although
on a convective time-scale and not on the time-scale of
sound waves. The advantage of the anelastic approximation
over the full compressible formulation is that in the absence
of sound waves, the time step restriction is less severe.

Our final ebjective is to focus attention on the effects of
depth-dependent thermodynamic (mean density, mean tem-
perauntre, and expansivity ) and transport {viscosity, conduc-
tivity) properties on turbulent thermal convection in infinite
Prandtl number fluids, as applied to Earth’s mantle. These
effects have not been treated simultaneously up to now in
the context of a three-dimensional model, although spheri-
cal axi-symmetric analyses including such effects have been
performed (e.g., [8]). Specifically, we employ the anelastic
model in our simuiation to accurately account for these
effects. It is our intention to simulate mantle convectien at
high Rayleigh numbers, well in the turbulent regime, and
therefore the domain will be cast in a cartesian framework
because of computational considerations, Periodic bound-
ary conditions are assumed along the two horizontal direc-
tions to mimic an infinite layer. Stress-free, non-penetrative,
isothermal boundary conditions, relevant to mantle convec-
tion are applied in the vertical direction. We will neglect the
effects of temperature-dependence of viscosity and non-
Newtonian rheology (nonlinear stress versus strain-rate
constitutive relationship) to further simplify the problem.
The effects of phase transitions in three-dimensional convec-
tion can also be simulated by using an effective thermal
expansivity in both the momentum and energy equa-
tions [9].

The depth-dependent properties significantly complicate
the continuity, momentum, and energy (temperature) equa-
tions. In particular, the depth-dependent properties intro-
duce variable coefficients into the problem and implicit
implementation of diffusion terms requires special care. In
the limit of an infinite Prandtl number, the inertial terms in
the momentum equations disappear and the velocity field
simply follows the temperature field. Continuity can then be
used to eliminate the horizontal velocities from the horizon-
tal momentum equations Lo express pressure in terms of the
vertical component of velocity. This, when substituted into
the vertical momentum equation, provides a single higher
order equation for the vertical component of velocity. This
higher order equation requires boundary conditions in
addition to the standard impermeability condition on the
top and bottom bounding planes. These additional condi-
tions are precisely the enforcement of continuity on the
boundaries.

The purpose of this paper is to describe an efficient
numerical algorithm to simulate compressible mantle
convection with depth-dependent properties in the hard
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turbulent regime. In order to efficiently resolve the wide
range of length scales associated with the turbulent
spectrum we employ a spectral collocation method. A mixed
Fourier—-Chebyshev expansion for the flow variables
provides superior spectral or exponential convergence and
also accurately resolves the thermal and viscous boundary
layers with minimal grid points. In the case of flows that
include phase transitions the effective thermal expansivity
peaks at the transition depths and high resolution is
required to resolve the internal boundary layer developed in
layered convection. Spectral methods with appropriate grid
stretching along the homogeneous and inhomogeneous
directions [10, 11] can efficiently resolve these internal
structures. Due to their high accuracy, spectral methods are
also very sensitive and require consistent and proper
implementation of boundary conditions. Simultaneous
enforcement of continuity and impermeability boundary
conditions for the fourth-order vertical velocity equation is
not straightforward. The foyrth-order equation, when dis-
cretized leads to a linear algebraic system. Naive enforce-
ment of the four boundary conditions would require
sacrificing the enforcement of the governing equation not
only at the boundary points but also at two other interior
points. Here we describe a simple influence matrix technique
to enforce both the continuity and impermeability condi-
tions without affecting the enforcement of the governing
equation in the interior. This approach is simpler than the
conventional influence matrix method [12, 13] in which
a Poisson equation is solved separately for pressure.
Although we describe this methodology in the context of
mantle convection, it can be extended to other problems as
well to facilitate proper application of boundary conditions
in the solution of higher order equations. In this paper,
foliowing Ku er af [14] and Heidvogel [15], we also
describe an efficient reduced matrix technique for the solu-
tion of Helmholtz-type linear equations with Neumann
boundary conditions. In the context of spectral methods,
the reduced matrix technique avoids the need for an
influence matrix technique in order to enforce Neumann or
mixed boundary conditions.

Section II describes the basic mathematical model and
the relevant governing equations. The numerical method
and the details of impilementation are given in Section III
Section IV provides some sample results on a critical
Rayleigh number. In order to demonstrate the numerical
method’s capabilities in the strongly time-dependent
regime, results are alse presented for the high Rayleigh
number regime.

II. MATHEMATICAL FORMULATION

In the present anc¢lastic model, the reference state for the
thermodynamic variables, about which perturbations are
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sought, is chosen to be time-independent, only a function of
depth, and given by the adiabatic condition. The following
expressions are the reference adiabatic depth-dependence of
density {g,}, temperature (T,), and pressure {p,),

Di 172
0u(2) =01 [1 +2—}—F(1 —:)]

- 4
et [5(1-(52)))

(1)

where subscript 1 corresponds to conditions at the top of
the convective layer and z is the normalized depth, which
ranges from 0 at the bottom to 1 at the top. The density
profile is taken from the equation of state called the
Adams-Williamson equation {e.g., [ 167) applied with ther-
mal expansivity a function of density [17]. This assumes
that the background density lies along the adiabat. The
adiabatic temperature profile is obtained by

dr’
dz" =a(e,)DiT,

(2)

In the above equations Di and y are the dissipation number
and Griineisen parameter, respectively. The dissipation
number is a measure of the scale height of the adiabat and
the Griineiser parameter is a measure of the an harmonic
character of the equation of state {c.g., [18]}. The density
(¢'), temperature (6'), and pressure (p') perturbations
about their adiabatic state are defined as

o' =o—g,=o.—ab +xp')

§=T—T, (3)

P =r—>p.

where « is the coeflicient of thermal expansion and y is the
isothermal compressibility. The above expressions for
the thermodynamic variables can be substituted in the
governing mass, momentum, and energy equations and
normalized in the standard way [19]. The nondimen-
sionalization process invoives the scales

length scale = 4, velocity scale =k /h

pressure scale =g, x,v,/h?,  temperature scale = 47,

where AT is the temperature difference across the convective
layer of depth A, v is the kinematic viscosity, k is the thermal
diffusivity. The thermodynamic and {ransport properties
are assumed to vary with depth and are nondimensionalized

with respect to their value at the top, to obtain the
corresponding nondimensional quantities,

— a I 4 _ v _ K _ H
azg—, =—, y=— K=—, H=_
Bay oy Vi Ky H,
(4)

where H is the internal heating. The specific heat at constant
pressure, C,, and the acceleration due to gravity, g, are
assumed to be constant over the entire convective layer. The
following nondimensional variables can then be introduced:

AT H? :
Ra:mg ’ P[‘=ﬁ, Di=algk
VK, K, C, 5)
smay a7,  KKLafn o HE
hoa, AT C, 4Tk,

For Earth’s mantle the nondimensional parameter & is only
a few percent [20] and K lies between 10~ % and 10~° [19]).
Therefore, both these parameters play an unimportant role
and, hence, we can set ¢=K=0. This anelastic liquid
approximation leads to the following governing equations
for the nondimensional velocity, temperature, and pressure
perturbations, (., &, p),

V-(g,u)=0
dp Oty
0=—<L 8, 5. Ragaf
dx; 0Ox,
Do Di ou, & [-a6
T A Didrwh= — g, i Y Y
Q"Dl+ 15,0 Rat'kﬁxk+6x,( 6x,-)

(6)

a (.aT, -
+5<k az)+AQuH

_{eu; oOu, 2
Tik_"(axk+6xf_35ikv'u)

with n=vg,,

where k = k/k, is the nondimensional thermal conductivity
at the top of the convective layer and thermal conductivity
and diffusivity are related as k, =x,0,,C,. Comparison
between an anelastic liquid approximation and the entropy
approach for the energy equation was made by Glatzmaier
[21]. Differences of a few percent were observed. In the
above equations, the infinite Prandtl number limit
appropriate to mantle convection is assumed to eliminate
the inertia terms in the momentum equation. For simplicitly
the bulk viscosity has been neglected in the expression for
the stress tensor. The momentum equations are not
prognostic and therefore the velocity field is determined by
the temperature field. Continuity and boundary conditions
place constraints on this driven velocity field.
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III. NUMERICAL METHOD

Numerical methods for the simulation of three-dimen-
sional, constant property, finite or infinite Prandtl number,
thermal convection at moderate to large Rayleigh numbers
are common [22, 23, 24, 25]. These simulations employ a
variety of numerical methods ranging from spectral to finite
difference methods. We extend the methodology from its
present canonical form to include the effects of depth-
dependent properties such as depth-dependent thermal
expansivity, background density from compressibility,
internal heat generation, and thermal conductivity. These
important aspects relevant to mantle convection introduce
additional terms into the governing equations and result in
coefficients which depend on the vertical coordinate.

The numerical procedure to be employed in advancing
the flow field can be outlined in the following four steps:

{1) Temperature evolution is governed by the energy
equation which can be written as

2 NG, 0)+ Li6),

where
Di 1 Ou;
= —u -Vi-— —
N(u, 8) u- Daoch+RaE rry
18 /-8T,
g U el 7
+ AH+— 5 5z (k az) (7
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L@ = 2. x; (k 6xi)'

In the above equation, N(u, 8) includes the nonlinear
(advection, buoyancy, and viscous heating) and time-inde-
pendent {internal heating and mean adiabatic diffusion)
terms and L{#) represents the linear diffusion term in the
energy equation. The energy equation being the only
(prognostic) equation with a time derivative, as a first step,
the temperature field is advanced in time with a three-stage
Runge-Kutta scheme for the nonlinear terms and an

implicit Crank-Nicholson scheme for the linear diffusion
term.

{2) The vertical momentum equation can be written as

¢ 1
vw+(F(z)+d‘“")3+H(z)w=—a—”—Raf’““o
d, oz Oz
where

dlnq ldlnga

Fay==0r=3"%
- (8)

i 2dlnﬁd1nga*£dzlngu
(z)_§ dz dz 3 42?

Note that this equation for the vertical velocity is linear with
variables coefficients which are functions of only the vertical
coordinate. The above equation must be solved with imper-
meability boundary condition (w(z=0, 1)=0) on the top
and bottom boundaries. A straightforward solution is not
possible since the pressure gradient on the right-hand side
couples w with the other components of velocity.

A common approach to solving this problem is to obtain
a Poisson equation for pressure from the divergence of the
momentum equation. The pressure Poisson equation is
solved to obtain pressure which can then be used in Eq. (8).
But, in the solution of the pressure Poisson equation no
natural pressure boundary condition is available, and
continuity is often enforced at the boundary [12,13,
26, 14, 277. The pressure poisson and the momentum equa-
tions are then coupled through this continuity boundary
condition. The influence matrix method can be used to
resolve this coupling [12, 13].

In the present context, with the absence of the nonlinear
terms in the momentum equations, a simplified approach
which avoids explicit solution of the pressure Poisson equa-
tion is possible. By eliminating the horizontal components
of velocity between the continuity and the two horizontal
momentum equations, pressure can be directly related to
the vertical component of velocity. This relation becomes
algebraic when expressed in Fourier space as

d*G dlnn d(?]

7
TEFw — =
P=ARR =G+ s k[d2+ & &
where
. AW dlng_a,
G= d_ = {9)

Here the hats represent Fourier coefficients obtained from
Fourier transformations along the two horizontal direc-
tions. The above equation can be substituted into the
Fourier transform of Eq. (8) to obtain a single fourth-order
equation for the vertical component of velocity. The
appropriate boundary conditions for this higher order
gquation are the impermeahility condition and the con-
tinuity equation. Here, the enforcement of continuity on the
boundary can be transformed into a vertical velocity
boundary condition by taking the vertical derivative of the
continuity equation

d d(ld@a

—0  at z=0,1.
&’ dzgadév) a =

(10)

The higher order equation and boundary conditions for
the vertical component of velocity are now completely
decoupled and can be computed from the temperature field.
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(3) As the third step, the pressure perturbation is
obtained from the vertical velocity through Eq. (9).

{4} From Eg. (6) the x- and y-momentum equation can
be written as

- 5 .
vy o _1op 10w

dz 0z ndx § ox (1)
dinffdv_1dp 1 0w

Vi +

dz 3z wdy [ dy

From the computed pressure and vertical velocity fields, the
above equations are solved to obtain v and v at the new time
level.

We employ a fully spectral Fourier-Chebyshev colloca-
tion methodology to implement the above outlined
numerical scheme. The spectral method is chosen for its
exponential or spectral convergence and superior resolution
of a wide range of length scales associated with turbulent
flows. Unlike lower order accurate finite difference and
finite element methods, spectral methods are unforgiving.
Physicaily meaningful boundary conditions and accurate
implementation of these boundary conditions are essential
in obtaining a scheme that is successful overall. These
implementation issues in the context of a spectral simula-
tion will be discussed below.

The variable coefficients and the resulting inhomogeneity
along the vertical direction will be accommodated with a
Chebyshev expansion for the flow field in the vertical direc-
tion. The periodic horizontal boundary conditions are
implemented with a Fourier expansion in these directions.
The Fourier-Chebyshev expansion provides the following
natural equi-spaced grid points in the horizontal directions
- and Chebyshev Gauss—Lobatto points in the vertical direc-
tion,

R

)= % (1 —Ccos [7;5{[: 11)]),

where N, N, and N_ are the number of points along the
three cartesian directions and L, and L, are the aspect
ratios along the horizontal directions. The following
forward and backward discrete Fourier transforms in the
horizontal directions can be defined

(12)

i U

6 Ny Ny

W (Ko By 21) = fgl j§1 w (i ¥ 20
é ]

2 Nexp {125k
— . [ — 3,
X eXp ILX =X; ) CXp L, vYi

(13)

where
N N
ko= —-{—=-1 L0, =
X ( 2 2 1 2
N N
k,=—(==%-1],..,0,..,=
=5 ;
u i (14)
u 1 ]
w (xn }j’ Zl')_NerkZI kzl W (kx’ k_l" Zn’)
6 4

2r 2z
X exp (—1 z kxx,-) exp (— ! L‘yk"' yJ).

In the above equations #, &, w, and 8 represent the Fourier
coefficients of velocity «, v, w, and perturbation tem-
perature §, and k. and k, are the wave-numbers. These
transforms can be efficiently implemented with fast Fourier
transforms available as highly optimized library routines in
CRAY computers.

(1) Temperature Step

Time-marching of the temperature equation (Eq.{7))
uses an explicit three-stage Runge-Kutta scheme for the
nonlinear terms and an implicit Crank—Nicholson scheme
for the linear terms. The discretized temperature equation
can then be written as

w=u(r),  0°=6(:")

J® = A1 N p(u®, 6°)
0" =89+ 1J° + co[L,(8%) + L, (6")]

H

CO: H
Jl=dt Np(u', 8"y —3J°
07 =0"+ 137" + e, [Lp(0') + Lp(67)]

_ s
=3

Stage 1

Stage I1 (15)

Ji=A1 Npu?, 07— 183!
02 =07 + £J7 + ¢, [Lp(68%) + L5(68%)] » Stage 1L

B(IrH—l):B?:’

where N, and L, are the discrete versions of the nonlinear
and linear operators defined in Eq. {7). At cach (m=0, I,
and 2) stage of the Runge-Kutta scheme the nonlinear
terms, J™, and the exphlicit part of the linear terms,
8" + ¢, L{G7), are first computed to form the right-hand
side of the equation, R,. This operation is performed in real
space, since the nonlinear terms are represented by a simple
product in real space as opposed to a convolution in
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spectral space. The resulting Helmholtz equation for the
unknown temperature can then be Fourier-transformed
along the two periodic directions te obtain the following set
of decoupled ODEs for the Fourier coefficients of the
temperature field {for each horizontal wave-number
combination k., k .):

cok

([ ( dim! 2nkr)2+‘ %)l+
E[dz( dx )]4[( L, (L‘.
(16)

X6m+l=R9.

With a Chebyshev discretization in the z direction the above
equation reduces to the matrix problem

T, 01—, 107 = R, (17)

where T,, is a square matrix of size (N_+1)x(N.+1)
obtained from the Chebyshev first derivative matrix D
(287, I is an identity matrix of the same size, and A, 1s a
constant which depends on k_ and k.. From Eq. (16) the
matrix T, and the constant A, can be defined as

E(Z ) 2.(z;)
=—2(D_ ip D, i =
!E(z,-)( e )ip (D), +

. 2nk \*  (2mk \?

In the above equation as well as all the other equations to
follow, no summation over the index 7 but summation over
all other repeated indices is assumed.

In the above matrix formulation the isothermal boundary
condition can be incorporated by modifying the first and
last rows of T,, by [100...0] and [000...1], respectively,
and also appropriately replacing the first and last elements
of the right-hand side [287] Equation (17) for the tem-
perature coefficients can then be efficiently solved by the
matrix diagonalization technique. This matrix diagonaliza-
tion technique involves the computation of eigenvalues and
eigenvectors of the modified matrix operator. Since these
three matrices, for m =90, 1, 2, are independent of both time
and horizontal wave numbers, the cigenvalues and eigen-
vectors can be computed once and for all and stored for
repeated later use. The computation of 6™ "' for each
horizontal wave-number combination (k ., £, ) then reduces
to two matrix-vector multiplications [28] which can be
performed in a highly efficient manner in vector machines
like the CRAY.

T,.) LAl
(T,.)y -

mi &g

P

(2) Vertical Velocity Step

The Fourier transform of the vertical momentum equa-
tion (Eq. (8)) can be discretized and written as

1 .
(Ml)ij W(Zj) = ;;_' (z) ((Drl)iiﬁ(zj) —Ra E(Zj] O_E(Zf) 9{25)),
(19)

where M, is a square matrix of size N, x N, given by

dln 3

(M), = (D.,), + (F+7) (z) (D.),

—(ki+kI—H(z)) 8,
and D,, and D, are the Chebyshev first and second

derivative matrices [29]. Similarly, the discrete version of
the pressure equation (Eq. (9)) can now be written as

=M, = [Ma +E2M+?} @,
where
(ML), = —iz)D., 7 F- ) 208, (20
and
Ma),=ie) | D)y + T 20D, |

ding.
x[(Dc.)pﬁ-ﬂ—dZ (z,,)a,,,],

where the matrix operators M,, M;, and M, are of size
N.x N_. By substituting Eq. (20) in Eq. (19} a linear system
corresponding to a single fourth-order equation for the
Fourier coefficients of the vertical velocity can be obtained
as

1 A
MW= —~Rap, a8,
]
where

21)

(Ms)u = (Ml):'j_ (Zr')(D('l)ip (Mz)pj-

S =

The above algebraic system should be solved with both
impermeable and continuity boundary conditions. The
impermeable condition can be easily enforced by defining a
modified matrix operator M ¥, which is equivalent to M,
but with the top and bottom rows appropriately replaced,
and zeroing the first and last elements of the right-hand side,
In essence, at the boundary points the no penetration
boundary condition is enforced instead of the governing
equation. Naive enforcement of the additional continuity
boundary condition (Egq. (10)) corresponding to the higher
order system would require sacrificing the enforcement of
the governing equation at a two interior nodes as well. A
solution at this stage without enforcing continuity bound-
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ary conditions is not feasible since the matrix operator M ?
is singular and non-invertable. Suppose, ¢ and f# are the
appropriate pressure boundary conditions {p(z=0}=¢,
p{z=1}=p) which will satisfy boundary continuity; these
boundary pressures need to be included in the definition
of M. By noting that the matrix operator M, provides
pressure when operated on W, the pressure boundary condi-
tions can be enforced by modifying the Chebyshev first
derivative matrix (which operates on M,) as

(D(‘l)]l (D('i)12
(Dcl)Zl (D('1)22

(D('l)l{\"; é
(Dc:)zfv_. plz;)

D) L £

(Do Do)y
0 (D('I)IE e 0 ﬁ(zl)
Q (D(-l)22 - 0 ﬁ(zz]
0 (Dulva - O AGu,

f(D¢-1)11+ﬁ{Drl)1N':

&D. a1+ A(D ). 22)

ED o) + B v,

The matrix on the right-hand side, (D?¥,), is the Chebyshev
first derivative matrix with the first and last columns
replaced by zeros. Therefore in the definition of M¥ the
Chebyshev first derivative matrix can be replaced by D
and the influence of the pressure boundary conditions
can be moved 1o the right-hand side and Eq. (21} can be
rewritten as

1 .
(M¥*),v(z) = ar (Rag,d0(z;) — &(D )y — B(Dy)in,),
(23)

where M¥#* is the same as M5 with both impermeable and
pressure boundary conditions enforced. The vertical
velocity can now be evaluated by inverting M#*, which is
non-singuiar and invertable. M** is independent of time,
therefore it can be computed, inverted, and stored for later
use at the very beginning. Since this matrix operator is
dependent upon k_ and k,, storage of M¥* for all wave
numbers is proportional to N, N N 2, Retaining all these
matrices in core memory is prohibitive for all but smail
grids. For larger problems these matrices can be computed
in a preprocessing step and stored on a fast access disk in
CRAY systems. At any time during the simulation, only two
of these matrices are retained in core memory, while com-
putations are performed on the first; the second can be read
into memory in an asynchronous manner from the fast
access storage. Such asynchronous I/O neither increases the

CPU time nor the wall clock turnaround time in any signifi-
cant manner, Further reduction in storage and memory is
possible by utilizing symmetries built into the problem. For
example, in the case of a square plan-form there is an
eightfold symmetry in the horizontal plane.

The boundary pressures ¢ and § are unknowns and need
to be evaluated through the influence matrix technique. The
continuity on the boundary (Eq. (10}) is used to evaluate £
and . Substituting Eq. {23) into the Fourier transform of
Eq. (10) we obtain

(M), [ -Rag,af(z;)+ &(D,,);, + (D, );x.1=0,

where

ding, ey 11
(Mﬁ)y = l:(Df‘z)lp +(D, }iq 7 (Zq) 5;”:} (M3 )pjl '_{(5
(24)

for i=1 and N., corresponding to the bottom and top
boundaries. The above two boundary conditions can be
rewritten in the form

[ (Me); (Do) (Mg, (B ), ][5]
(Mg)w.; (Doydyn Mgy, (Do )in ILB
[ O Rz | o5
(Mg}, Ra g a0z}
where the matrix on the left-hand side is the influence
matrix. The elements of this influence matrix correspond to
boundary divergences due to unit pressure perturbations at
the boundaries. The right-hand side represents the bound-
ary divergences corresponding to the particular solution,
with arbitrary zero pressure boundary condition. The solu-
tion vector [£B])T corresponds to the correct boundary
pressure which will nullify the divergence due to the par-
ticular solution. The influence matrix is frozen in time and
is only (2 x 2} in size; therefore it can be computed once and
for all and stored at the.beginning for each horizontal wave-
number combination. Each time step the computational
methodology involved in the vertical-velocity evaluation.
can be summarized by the following three steps:

{1) Calculate the right-hand side of Eq. (25)

{2) Solve Eq.(25)for £ and §

(3) Solve for w in Eq. {23).

The above steps are repeated for each k. and &, except

at k, =k, = 0. This mean vertical velocity can be shown to
be identically equal to zero.

{3) Pressure Step.

Once the vertical velocity is known, the pressure can be
computed from the algebraic relation in Eq. (20). Here, the
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matrix operators, M; and M,, depend only on the grid
definition in the verticai direction and on the variation of
adiabatic density and viscosity with depth. Therefore M,
and M, can be computed once at the very beginning,
and, at each time step, M, can be constructed without
much computational effort. This operation is repeated for
each horizontal wave-number combination, except at
k,=k,=0. The mean pressure variation with depth is
evaluated from

dploo

= Ra 5,00

(26)

which can be solved by inverting the Chebyshev first-
derivative matrix. Before inverting the matrix, a Dirichlet
boundary condition, p|g{z=1)=0, is applied to anchor
the mean pressure at the top.

(4) Horizontal Velocity

The x-momentum equation: {Eq. {11)) can be Fourier-
transformed along the horizontal directions and discretized
in the vertical direction to obtain the algebraic system,

(Vg ilz) — (k5 + k2 Ld(z;) = ii; (p— FW)(z)
n diny 27)
(V)= D)+ = Lz ) (Do

where V, is a square matrix operator of size N_x N_. The
boundary conditions appropriate to mantle convection are
the stress-free boundary conditions, (Ju/dz)(z=0, 1}=0.
These pure Neumann boundary conditions can be built into
the operator using the reduced matrix technique [ 14, 157},
In this technique a reduced matrix, V,, of size
(N.—-2)x(N_.-2) which incorporates the Neumann
boundary conditions, will be derived from V. The reduced
operator V| when operating only on the interior data points
will have the same effect as the full operator V, operating on
all the points, including the boundary points. ¥V, can be
derived by writing the full operator as

N N.—1

Z (Vl)rjﬁ(z_;‘)= Z (v1);jﬁ(zj]+(vl)i1"“(21)

i=1 j=2

+ (Vl)m{. ﬁ(ZN:}’ (28)

where the boundary values of # are isolated. Since the
reduced operator operates only on the interior points,
the idea is to express the boundary values of # in terms
of the interior points. For this purpose the Neumann
boundary conditions can be written as

N: N-=1

Y D )yiz)= Y (D) alz)+ (D) lz,)
=1 i=2

+ (D) v izy,)=0

(29)

N-

. No—1
Z (D )y ul(z)= Z (D )y #(z,)+ (D )y ilzy)

i=1 f=2
+ (Dcl)N:N: ﬁ(ZN:) =0.
The above two equations can be solved to express #(z,) and

i#(zy.)} in terms of the interior values. These, when sub-
stituted in Eq. (28), result in

5. [(vl),-j

j=2
(V) (D . D)y + (V)i (D) (D
(D, )t (D) iw. — (D)) (D)), ]
(Vl)il (D(-I)IN: (Du)N,.j* (Vl)iN: (Dc-l)N:l (Dcl)l‘;‘
B (Do)t (Dep)iw. — (Do) (Do), }
x ii(z,), (30)

where the terms within the square bracket represent the
(i, j )th element of the reduced operator ¥,. In terms of the
reduced matrix, Eq. (27) can be rewritten as

(V) ilz) — (K24 K2) I,,,-ﬁ(zj)=']:1%(ﬁ—m)(2,-), 31)

where 7 and j range from 2 to N,— 1. The above linear
algebraic system can be efficiently solved with the matrix
diagonalization technique [28] by obtaining the eigen-
values and eigenvectors of Vl. Since this operator neither
depends on time nor on the wave numbers, its eigenvalues
and eigenvectors can be precomputed and stored iIn
memory. Once the interior #'s are obtained from Eq. {31),
its boundary values can be evaluated by solving Eq. (29). It
should be pointed out that using the reduced matrix techni-
que other Dirichlet, Robin, and mixed boundary conditions
can be handled as well with relative ease. Homogeneons
boundary conditions, as in the present case, leave the right-
hand side of the reduced equation (Eq. (31}) unaltered.
Inhomogeneous boundary conditions wiil introduce
additional terms to the right-hand side.

The p-momentum equation is very similar to the
x-momentum equation and the corresponding solution pro-
cedure 1s identical. The resulting reduced matrix for the
evaluation of ¢ is again V¥ . In the case of k _ = 0 modes in the
evaluation of # and, similarly, k, =0 modes in the evalua-
tion of ¢ the forcing term (the right-hand side of Eq. (31))
vanishes, This results in trivial zero solutions which need
not be computed explicitly. The above four steps complete
the time-marching procedure.
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IV. RESULTS

The numerical stmulation is first tested in the limit of
depth-independent constant thermodynamic and transport
properties, In this limit the present simulation was a bench
mark against carlier three-dimensional simulations of
Travis et al. [25]. The impermeable, free-slip, thermaily
insulating side walls employed in their finite difference
computations were approximately enforced in the present
spectral simulation with periodic boundary conditions. This
approximation was improved by restricting the initial tem-
perature and velocity perturbation to be a pure sine or
cosine series along the horizontal directions. Several of the
test convection cases reported by Travis ef al. [25] were
successfully repeated with the present code. The present
numerical simulation was further validated with the calcula-
tion of the critical Rayleigh number as a function of the
aspect ratio, the ratio of width to depth of the physical
domain, in the limit of constant properties. The result is
presented as the soiid line in Fig. 1. The observed critical
Rayleigh number of 272%/4 and the critical aspect ratio of
2 \/5. agree with existing linear stability results [30].

First we shall consider the effects of depth-dependent
properties on critical Rayleigh numbers. For this purpose,
we employ the following plausible depth dependence for
adiabatic density (g,), Griinaisen parameter (), adiabatic
temperature (7,), thermal expansivity (&), and thermal
conductivity (k) [17],
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FIG. 1. Critical Rayleigh number vs aspect ratio for depth-dependent
viscosity variation given by Eq.(33a) for four different bottom to top
viscosity contrasts.
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where v, is Griineisen parameter evaluated at the top. With
Di=04and y, = 1.4, we obtain a adiabatic density contrast
of 1.25 between the bottom and the top. The corresponding
adiabatic temperature, Griinaisen parameter, thermal
expansivity, and thermal conductivity contrasts are 1.23,
244, 026, and 247, respectively. Viscosity increase with
depth is more dramatic and influences the resulting flow
field significantly. The following two viscosity functions
which increases with depth with varying bottom to top
viscosity contrast, {, are explored

filz) = exp(In(Z)(1 —z))

flzy=exp(In({)(1 —2)'7*).

(33a)
{33b)

Figures 1 and 2 show the variations of the critical Rayleigh
number, Ra,, with the aspect ratio for the above two
viscosity functions for viscosity contrast equal to 5, 25, and
100. Here the critical Rayleigh numbers are obtained by an
initial value approach. Time-accurate calculations were
performed in each case with 2 small but random initial
temperature perturbation. The flow field was integrated in
time until the disturbance growth rate remained a constant.
Close to Ra,_,, all but the growing eigenmode (if any) will
decay rapidly and, after an initial transient period, the
growth of the perturbation corresponds to that of the eigen-
mode. The critical Rayleigh number, Ra_, corresponding to
zero disturbance growth rate was found by interpolation.

It is of interest to consider the effect of depth-dependent
properties on vertical resolution requirements. Tables 1
and II summarize non-dimensional linear disturbance
growth rates for viscosity variations given by Eqs. (33a) and
(33b), respectively.

In Table I, the first row of data corresponds to the
constant properties case, while the second row of data, with
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F1G. 2. Critical Rayleigh number vs aspect ratio for depth-dependent
viscosity variation given by Eq. (33b) for four different bottom te top
viscosity contrasts.
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TABLE1

Convergence Test of Linear Growth Rates for Depth-Dependent
Properties (Eqs. (32), (33aj)

{ Ra N.=15 N.,=35 N_=55
1 660 0.05627 005627 0.05627
665 016922  0.16922 0.16922
670 028203  0.28203 0.28203

(Constant properties case)
1 1864 0.04565  0.04565 0.04565
1874 0.15923 015923 0.15923
1884 027259 027260 027260
10 6090 003002  D.03002 0.03002
6120 0.13526  0.13526 0.13526
6150 024033 0.24033 0.24033
25 10350 006962  0.07021 0.07021
10400 0.17376  0.17435 0.17435
10450 0.27773  0.27831 0.27831
100 23550 003714 003740 0.03744
23650 0.13023  0.12788 0.12788
23750 0.22326  0.22088 0.22088

{ =1, corresponds to the case when viscosity is depth inde-
pendent but all other properties vary with depth according
to Eq. (32). In both these cases 15 grid points in the vertical
direction provide adequate resolution, indicating that rapid
convergence to the correct result is not affected by vertical
variations in adiabatic density, temperature, thermal expan-
sivity, and thermal conductivity. Exponential viscosity
variations given by Eq. (33) provide a more stringent test
for convergence. In the case of simple exponential increase
in viscosity with depth (Table I), the number of vertical grid
points required for convergence modestly increases with
viscosity contrast parameter{. The exponential con-
vergence is destroyed with the use of Eq. (33b) for viscosity

TABLE i

Convergence Test of Linear Growth Rates for Depth-Dependent
Properties (Eqs. (32), (33b))

: Ra N,=15 N.=35 N,=55 N.=75 N,=95
10 9960 0005 0068 0075 0077 0078
9990 0069 0132 0139 0141 0142
10020 0133 0196 0203 0205 0206
25 20000 0052 0029 0038 0040 0041
20080 0033 0014 0123 0126 0127
20160 0118 0199 0208 0211 0212
100 59100 0066 0035 0045 0045 0050
59400 0043 0143 0154 0158  0.159
59700 G.ISI 0252 0263 0266  0.268

variation. A log-log plot of error against the number of grid
points reveals algebraic convergence for this viscosity varia-
tion. From Table Il it can be verified that the order of
accuracy depends on the viscosity contrast and ranges from
2.0 to 2.25. The loss of exponential convergence can be
attributed to the singularities present in the derivatives of
the viscosity function given by Eg. (33b). Although the
polynomial expansion inherent in the Chebyshev
representation smooths this singularity in the numerical
representation, its effect can be clearly seen in the slow
convergence.

Simulations were also conducted in the high Rayleigh
number strongly time-dependent regime. Here results
obtained at two different Rayleigh numbers, Ra = 1.0 x 108,
1.0x 107, will be presented. These simulations were
performed using the depth-dependent viscosity variation
given in Eq. (33a) with a top to bottom viscosity contrast of
{=10. A large aspect ratio box of size 5x 5x 1 is chosen
and the corresponding critical Rayleigh number with the
other property variations given by Eq. (32) 15 §278.

Steady-state results were obtained for Rayleigh numbers
up to 1.5 x 10° In the steady-state regime large scale struc-
tures are found with descending sheets and ascending
plumes appearing in cylindrical forms, as shown by the
isosurface of the temperature field at T=0.2 (Fig. 3a) and
T=0.5 (Fig. 3b) for Ra= 1.0 x 10°. The planforms are rec-
tangular and owing to the depth-dependent properties, are
very different from the corresponding steady-state
Boussinesq structures [257]. The temperature isosurface of
the plume head spreads horizontally to quite an extent,
because of the increase in the vertical velocity of the plume
in response to the increasing local Rayleigh number that is
due to the decrease in viscosity and the increase in thermal
expansivity with height.

At a higher Rayleigh number of 1.0x 107 (Figs. 4) the
flow is strongly time-dependent, A grid resolution of
160 x 160 Fourier modes and 60 Chebyshev polynomials
were used in this simulation. More upmoving plumes
appear at random near the bottom boundary and they have
a tendency to converge towards a common point at the
center of the square planform formed by the downwelling
sheets. Such descending sheets have been observed also in
the simulation of a compressible mantle in a spherical shell
with internal heating [31]. Although the descending
boundary fayers are primarily sheet-like, many small-scale
curvilinear patterns appear and propagate along these
downwelling sheets. Visualizations exhibit a flow with two
basic time scales: one associated with the large-scale circula-
tion and the other associated with the small-scale boundary
layer instability at the top. The time scale of the plume
pulsation near the bottom boundary is driven by the large-
scale circulatory motion. More detailed results on the
nature of this time-dependent high Rayleigh number mantle
convection are presented in a recent paper [32].



FIG. 3. Isosurface plots of temperature fields for Ra = 10°. Isosurface values of T'=0.5 (a) and 0.2 (b) represent respectively ascending circular plumes
and descending sheets.

72



FIG. 4. Isosurface plots of temperature fields for Ra = 107, Isosurface values of 7= 0.5 (a) and 0.2 (b) represent respectively many ascending plumes
converging to a common point and descending cold sheets with many small-scale instabilities.
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Tests on computational time reveal that the present
numerical algorithm runs at around 210 Mflops on a single
processor CRAY-YMP. Such high speed was possible
because the above algorithm spends approximately 97 % of
its computational time in modules which perform repeated
matrix—matrix and matrix—vector multiplications and fast
Fourier transforms. Highly optimized library routines are
available to perform these operations in an efficient manner.
Computations on a 32x32x55 grid typically requires
0.6 CPU seconds per Runge—Kutta stage. The computa-
tional time almost linearly increases with the number of grid
points in the horizontal directions.? On the other hand, the
increase in the computational time with vertical resolution
is approximately N !?°. This is much less severe than a
quadratic increase in the number of arithmetic operations
required in matrix—vector multiplication, due to both the
Strassen algorithm for matrix multiplication [33] and vec-
torization. It should be pointed out that approximately
35% of the computational time is spent in evaluating the
right-hand side of Eq. (17), during the temperature step;
60% of this 35% is spent in the evaluation of the viscous
heating. In Bousinessq problems where viscous heating can
be neglected this extra computational effort can be avoided.

Y. CONCLUSION

In the context of the spectral collocation method, an
efficient implementation of a semi-implicit algorithm for
a variable coefficient problem has been demonstrated,
provided the variable coefficients depend only on the depth.
This one-dimensional variation of coefficients, although still
restrictive, goes beyond the conventional constant coef-
ficient approximation. A number of interesting applications
are possible where the physical problem can be modelled
with properties that vary primarily in only one spatial direc-
tion. Here in particular we have developed the numerical
methodology in the context of mantle convection with
depth-dependent thermodynamic and transport properties.
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2 Although the CPU time consumed in the FFTs along the horizontal
directions increase as N log(N), the FFTs account for only 20 to 25% of
the overall computation.

o —

A

11.
12.

19.
20.
21.
22
23.

24.

25.
26.

2%

28.

29.

30.

31.

32

BALACHANDAR AND YUEN

REFERENCES

D, L. Anderson, Science 213, 82 (1982).

M. A. Richards, R. A. Duncan, and V. E. Courtillot, Science 246, 103
(1989).

I. H. Campbell, R. W. Griffths, and R. L. Hill, Narure 339, 697 (1989).
A. Chopelas and R. Bochler, Geophys. Res. Lert. 16, 1347 (1989).

M. Osako and E. [to, Geophys. Res. Letr. 18, 239 (1991).

B. H. Hager and M. A. Richards, Phil. Trans. R. Sec. London A 328, 309
(1989).

. U. Hansen, D. A. Yuen, and 8. E. Kroening, Geophys. Res. Leti. 18,
1261 (1991).

. L. P. Solheim and W. R. Peltier, Geophys. Astrophys. Fluid Dyn, 53, 205

(1990).

. U. R. Christensen and D. A. Yuen, J. Geophys. Res. 10, 291 (1985).
10.

A. Bayliss, D. Gottlieb, B. J. Matkowsky, and M. Minkoff, J. Compur.

Phys. 81, 241 (1989).

J. M, Augenbaum, Appl. Numer. Math. §, 459 (1989).

L. Kleiser and U. Schumann, in Proceedings, Third GAMM Conference

on Numerical Methods in Fluid Mechanics, edited by E. H. Hirschel

(Vieweg, Braunschweig, 1980).

. L. 8. Tuckerman, J. Comput. Phys. 80, 403 (1989).

. H. C. Ku, T. D. Taylor, and R. S. Hirsch, Compur. Fluids 15, 195
{1987).

. D. B. Haidvogel and T. A. Zang, J. Comput. Phys. 30, 167 (1979).

. F. Birch, J. Geophys. Res. 57, 227 (1952).

. H. Hong and D A. Yuen, J. Geophys. Res. 95, 19933 (1990).

. D. L. Anderson, Theory of the Earth (Blackwell Scientific, Oxford,
1989), Chap. 5.

D. L. Turcotte, K. E. Torrance, and A, T. Hsui, in Methods in
Computational Physics, Vol. 13 (Academic Press, New York, 1973).
G. T. Jarvis and D. P. McKenzie, J. Fluid Mech. 96, 515 (1980).

G. A. Glatzmaier, Geophys. Astrophys. Fiuid Dyn. 43, 223 (1988).

S. Balachandar, M. R. Mazxey, and L. Sirovich, J. Sci. Comput. 4, 219
(1989).

L. Sirovich, S. Balachandar, and M. R. Maxey, Phys. Fluids 4 1, 1911
(1989).

U. Hansen, D. A. Yuen, and S. E. Kroening, Phys. Fluids A2 12, 2157
{1990).

B. Travis, P. L. Olson, and G. Schubert, J. Fluid Mech. 216, 71 (19%0).

R. Madabhushi, S. Balachandar, and P. Yanka, J. Comput. Phys. 105,
159 (1992).

M. R. Schumack, W. W. Schultz, and J. P. Boyd, J. Comput. Phys. 94,
30 (1991).

C. Camuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral
Methods in Fluid Dynamics (Springer-Verlag, New York, 1988).

T. A. Zang, C. L. Streett, and M. Y. Hussaini, ICASE Report, 89-13,
1989 {unpublished).

P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge
Univ. Press, Cambridge, UK, 1984).

D. B. Bercovici, G. Schubert, and G. Glatzmaier, Science 244, 350
{1989).

S. Balachandar, D. A. Yuen, and ID. Reuteler, Geophys. Res. Lett. 19,
2247 (1992).

. V. Pan, STAM Ren. 26, 393 (1984).



